Trigonometric Ratio Practice Questions

DO NOT USE A CALCULATOR ON ANY OF THE FOLLOWING QUESTIONS UNLESS INDICATED.

(B)
$$\frac{2}{5}$$

(C)
$$\frac{5}{\sqrt{29}}$$

(D)
$$\frac{5}{2}$$

2. In Triangle ABC above, what is the value of $\cos B$?

(A)
$$\frac{2}{\sqrt{13}}$$

(B)
$$\frac{3}{\sqrt{13}}$$

(C)
$$\frac{2}{3}$$

(D)
$$\frac{3}{2}$$

- 3. In Triangle ABC above, what is the value of $\tan C$?
 - (A) $\frac{5}{9}$
 - (B) $\frac{5}{\sqrt{106}}$
 - (C) $\frac{9}{\sqrt{106}}$
 - (D) $\frac{9}{5}$
- 4. FREE RESPONSE: In Triangle FGH, the measure of $\angle G$ is 90° and FG = 3. If $\tan F = \frac{4}{3}$, what is the length of \overline{FH} ?

5. (CALCULATOR) FREE RESPONSE: In Triangle ABC, the measure of $\angle C$ is 90° and AB = 26. If $\sin B = \frac{5}{13}$, what is the length of \overline{BC} ?

Note: Figure not drawn to scale.

7. FREE RESPONSE: In Triangle ABC above, the sine of y° is 0.8. What is the cosine of x° ?

Note: Figure not drawn to scale.

8. In the figure above, triangle ABC is similar to triangle DEF and $\angle B = \angle E$. What is the value of tan(F)?

- (B) $\frac{5}{13}$
- (C) $\frac{12}{13}$
- (D) $\frac{12}{5}$

Note: Figure not drawn to scale.

9. (CALCULATOR) FREE RESPONSE: In the figure above, $cos(D) = \frac{4}{5}$. If CD = 16 and DE = 10, what is the length of \overline{BC} ?

10. (CALCULATOR) FREE RESPONSE: In triangle DEF, the measure of $\angle E$ is 90° , DE=12 and EF=16. Triangle LMN is similar to triangle DEF, where vertices L, M, and N correspond to vertices D, E, and F, respectively, and each side of triangle LMN is $\frac{2}{7}$ the length of the corresponding side of triangle DEF. What is the value of $\cos N$?

Additional Trigonometry Topics Practice Questions

DO NOT USE A CALCULATOR ON ANY OF THE FOLLOWING QUESTIONS UNLESS INDICATED.

1. If $x^{\circ} + y^{\circ} = 90^{\circ}$ and $\cos y^{\circ} = \frac{7}{13}$, what is the value of $\sin x^{\circ}$?

(A)
$$\frac{13}{7}$$

(B)
$$\frac{6}{13}$$

(C)
$$\frac{7}{13}$$

(D)
$$\frac{6}{7}$$

2. If $\sin n = \frac{3}{x}$ and $x \neq 0$, what is n in terms of x?

(A)
$$\sin^{-1}(\frac{3}{x})$$

(B)
$$\sin(3x)$$

(C)
$$\sin^{-1}(\frac{x}{3})$$

(D)
$$\sin(\frac{x}{3})$$

3. In a right triangle, one angle measures w° , where $\sin w^{\circ} = \frac{5}{13}$. What is $\cos(90^{\circ} - w^{\circ})$?

(A)
$$\frac{5}{13}$$

(B)
$$\frac{12}{13}$$

(C)
$$\frac{8}{13}$$

(D)
$$\frac{13}{5}$$

4. If $2 \tan b = \frac{3n}{4m}$, what is *b* in terms of *m* and *n*?

(A)
$$\tan^{-1}(\frac{8m}{3n})$$

(B)
$$\tan^{-1}(\frac{6n}{4m})$$

(C)
$$\tan^{-1}(\frac{4m}{6n})$$

(D)
$$\tan^{-1}(\frac{3n}{8m})$$

Note: Figure not drawn to scale.

5. FREE RESPONSE: In the triangle above, the cosine of t° is 0.35. What is the sine of n° ?

6. If $\sin(90^{\circ} - x^{\circ}) = n$, which of the following must be true for all values of x?

(A)
$$\cos(x^{\circ}) = n$$

(B)
$$\cos(90^{\circ} - x^{\circ}) = n$$

(C)
$$\sin(x^{\circ}) = 90 - n$$

(D)
$$\sin(90^{\circ} - n^{\circ}) = x$$

7. If
$$\frac{\cos x^{\circ}}{4} = \frac{n}{8t}$$
, what is x in terms of n and t ?

(A)
$$\cos(\frac{n}{2t})$$

(B)
$$\cos^{-1}(\frac{n}{2t})$$

(C)
$$\cos(\frac{t}{2n})$$

(D)
$$\cos^{-1}(\frac{t}{2n})$$

Note: Figures not drawn to scale.

- 8. (CALCULATOR) The angles shown above are acute and $\sin x^{\circ} = \cos y^{\circ}$. If x = 3z + 5 and y = 2z 10, what is the value of z?
 - (A) 15
 - (B) 17
 - (C) 19
 - (D) 37
- 9. FREE RESPONSE: If $n^{\circ} = \cos^{-1}(\frac{1}{\sqrt{2}})$, what is the value of n?

10. (CALCULATOR) FREE RESPONSE : In Triangle NOP above, point K (not shown) lies on \overline{NP} . What is the value of $\cos(\angle KOP) - \sin(\angle NOK)$?